

Manuel d'installation et de maintenance

CTC EcoPart Pro/Basic

Modèle i425-i435 / 425-435

Traduction de la notice originale.

A conserver pour un usage ultérieur.

A lire attentivement avant utilisation.

Sommaire

1.	Démontage du module de refroidissement	3
2.	Félicitations pour l'achat de votre nouveau prod	duit!4
3.	Liste de contrôle	5
4.	Important !	6
5.	Consignes de sécurité	7
6.	Introduction	8
7. 7.1	Données techniques Tableau 400V 3N~	
7.2	Tableau 230V 1N~	11
7.3 7.4	Emplacements des composants Diagramme des dimensions	14
7.6 7.5	Circuit du liquide de refroidissement Plage de fonctionnement	
8.	Installation	16
8.1 8.2	La livraison comprend	17
8.3	Côté agent de chaleur Pompes de circulation, côté agent de chaleur	19
8.5 8.6	Circuit d'eau glycolée Pompe à eau glycolée	
9.	Installation électrique	25
9.1	Sortie Alarme	25
9.2	Chauffage à l'eau souterraine	25

10.	Raccordement du circuit de commande	26
10.1	CTC EcoPart i425-i435 Pro	26
10.2	CTC EcoPart 425-435	27
10.3	Raccordement en série des pompes à chaleur	27
10.4	Raccordement du circuit de commande	30
10.5	Schéma électrique pour CTC i425-i435 Pro 400V 3N~	36
10.6	Schéma électrique,	
	module de refroidissement inférieur 400V 3N~ L2	37
10.7	Schéma électrique,	
	module de refroidissement supérieur 400V 3N~ L3	38
10.8	Alimentation et communication 400V 3N~	39
10.9	Schéma électrique CTC EcoPart i425-i430 Pro 230V 1N~	40
10.10	Schéma électrique module de refroidissement 230V 1N~	41
10.11	Alimentation et communication 230V 1N~	42
10.12	Tableau de connexion carte de relais	
	(Tous les modèles de pompes à chaleur)	43
10.13	Tableau de connexion module de refroidissement	46
10.14	Résistances pour les sondes	47
11.	Premier démarrage	49
12.	Fonctionnement et maintenance	49
12.1	Maintenance périodique	
12.2	Arrêt du fonctionnement	49
12.3	Position de service	
13.	Dépannage	50
13.1	Prohlèmes d'air	50

Software update

software.ctc.se

Pour plus d'informations sur les fonctions mises à jour et le téléchargement du dernier logiciel, consultez le site Web "software.ctc.se".

1. Démontage du module de refroidissement

- Toute intervention sur le système frigorifique du produit ne peut être effectuée que par du §personnel habilité.
- Coupez l'interrupteur général de sécurité avant toute intervention sur le produit.

 Débranchez les tuyaux et le connecteur du câble d'alimentation du module de refroidissement.

 Attachez les deux poignées de transport au bord inférieur du module de refroidissement.

3. Retirez les vis de fixation du module de refroidissement.

4. Pour extraire le module de refroidissement, commencez par le soulever légèrement vers le haut à l'aide des poignées de transport.



5. Soulevez le module de refroidissement à l'aide des poignées de transport et des sangles.

A l'aide des poignées de transport et des sangles, soulevez le module de refroidissement pour le placer dans le produit. Retirez les poignées de transport, remettez les vis en place et rebranchez le câble d'alimentation et les tuyaux.

2. Félicitations pour l'achat de votre nouveau produit!

La pompe à chaleur complète pour la roche, le sol ou le lac

La CTC EcoPart i425-i435 est une pompe à chaleur qui extrait la chaleur de la roche, du sol ou d'un lac et alimente le circuit de chauffage existant de la maison.

La pompe à chaleur est destinée à une utilisation commerciale et peut être connectée au système de chauffage et d'ECS existant de la propriété conformément à l'exemple du système CTC EcoLogic L.

La CTC EcoPart a été conçue pour fonctionner très efficacement, avec un niveau sonore bas.

Ce manuel ne décrit pas les commandes pourCTC EcoLogic L ou l'affichage CTC Basic; nous vous invitons à consulter les manuels respectifs pour ces produits.

3. Liste de contrôle

La liste de contrôle doit toujours être remplie par l'ingénieur d'installation.

- Il est possible que ce document vous soit demandé en cas d'entretien.
- L'installation doit toujours être effectuée conformément aux instructions d'installation et de maintenance.
- L'installation doit toujours être effectuée dans les règles de l'art.

Suite à l'installation, l'appareil doit être inspecté et des contrôles fonctionnels doivent être réalisés comme indiqué ci-dessous :

Ins	tallation des tuyaux
	La pompe à chaleur est remplie, positionnée et réglée de manière correcte selon les instructions.
	La pompe à chaleur est positionnée de manière à pouvoir être réparée.
	Capacité de la pompe à charge/du circuit de chauffage (en fonction du type de système) pour le débit requis.
	Assurez-vous qu'il y a un débit.
	Ouvrir les robinets de radiateur (en fonction du type de système) et autres robinets applicables.
	Test d'étanchéité.
	Purgez le système.
	Vérifiez que les soupapes de sécurité requises fonctionnent correctement.
	Action prise pour traiter les condensats.
Ins	tallation électrique
	Interrupteur d'alimentation.
	Câblage correct.
	Sondes installées.
	Pompe à chaleur activée et démarrée.
	Accessoires.
Info	ormations pour le client (adaptées à l'installation)
	Mise en service avec le client/l'installateur.
	Menus/commandes pour le système choisi.
	Manuel d'installation et de maintenance remis au client.
	Contrôle et remplissage, circuit de chauffage.
	Informations sur les réglages précis.
	Informations de défauts
	Essai de fonctionnement des vannes de sécurité installées.
	Enregistrez votre certificat d'installation sur ctc.se. (ctc-heating.com).
	Information sur les procédures de signalement de fautes.

Date/Installateur

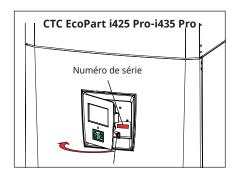
Date/client

Important! 4.

Vérifiez plus particulièrement les points suivants au moment de la livraison et de l'installation:

- Le produit doit être transporté et entreposé en position verticale.
- Retirez l'emballage et, avant l'installation, contrôlez que le produit n'a pas été endommagé pendant le transport. Signalez tout dommage de transport au transporteur.
- Placez le produit sur une base solide, de préférence en béton. Si le produit doit être posé sur une moquette souple, placez des plaques de base sous les pieds réglables.
- N'oubliez pas de laisser une zone libre d'au moins 1 mètre devant le produit pour la maintenance.
- Le produit ne doit pas non plus être placé en dessous du niveau du sol.
- Évitez de mettre le produit dans des pièces à cloisons peu épaisses, car les personnes dans la pièce adjacente pourraient être gênées par le bruit et les vibrations.
- Veillez à ce que les tuyaux utilisés entre la pompe à chaleur et le circuit de chauffage soient de dimensions adéquates.
- Enregistrez le produit pour la garantie et l'assurance sur notre site Internet https://www.ctc-heating.com/customer-service#warranty- registration

Les informations fournies sous ce format [i] ont pour objectif d'aider à garantir le fonctionnement optimal du produit.


Les informations fournies sous ce format [!] sont particulièrement importantes pour l'installation et l'utilisation correctes du produit.

Lorsque vous communiquez avec CTC, mentionnez toujours ce qui suit :

- Numéro de série
- Modèle/Dimension
- Le message de panne présenté
- Votre numéro de téléphone

CTC EcoPart 425-435

Le numéro de série à 12 chiffres se trouve sur un autocollant fixé sur le couvercle supérieur du produit.

Complétez les informations ci-dessous. Elles peuvent s'avérer utiles en cas de besoin.

Produit :	Numéro de série :
Installateur :	Nom:
Date:	№ tél. :
Installateur électrique :	Nom:
Date:	№ tél. :

Aucune responsabilité ne sera acceptée pour toute erreur d'impression. Nous nous réservons le droit d'apporter des modifications de conception.

5. Consignes de sécurité

En fonction de la catégorie de surtension III, un disjoncteur différentiel omnipolaire doit être installé en amont de l'installation pour assurer la déconnexion de toutes les sources d'alimentation électrique.

Coupez l'alimentation à l'aide d'un interrupteur omnipolaire avant toute intervention sur le produit.

Le produit doit être raccordé à la terre de protection.

Le produit est classé IP X1. Le produit ne doit pas être rincé à l'eau.

Lorsque vous manipulez le produit avec un anneau de levage ou un appareil similaire, assurez-vous que l'équipement de levage, les œillets, et les autres pièces ne sont pas endommagés. Ne vous tenez jamais sous un produit levé.

Ne compromettez jamais la sécurité en enlevant les couvercles boulonnés, capots ou similaires.

Toute intervention sur le système frigorifique du produit ne peut être effectuée que par du personnel habilité.

L'installation et le raccordement dans le produit doivent être réalisés par un électricien qualifié. Toutes les tuyauteries doivent être installées conformément aux réglementations en vigueur.

L'entretien du système électrique du produit ne doit être réalisé que par un électricien qualifié conformément aux exigences spécifiques de la norme nationale concernant la sécurité électrique.

S'il est endommagé, le câble d'alimentation doit être remplacé par le fabricant ou par un ingénieur d'entretien qualifié afin d'éviter tout risque.

Contrôle des soupapes de sécurité :

-vérifiez régulièrement la soupape de sécurité de la chaudière/du système.

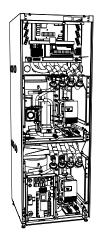
Le produit ne doit pas être démarré avant d'être rempli d'eau ; les instructions correspondantes sont disponibles à la section « Installation des tuyaux ».

AVERTISSEMENT : ne pas mettre le produit sous tension s'il existe une possibilité que l'eau du chauffe-eau soit gelée.

Cet appareil peut être utilisé par les enfants à partir de huit ans et par les personnes présentant des capacités physiques, sensorielles ou mentales réduites ou un manque d'expérience ou de connaissances, à condition d'apprendre, auprès d'une autre personne ou conformément aux instructions fournies, à utiliser l'appareil en toute sécurité et à comprendre les risques encourus. Les enfants ne doivent pas jouer avec l'appareil. Le nettoyage et la maintenance ne doivent pas être effectués par des enfants sans surveillance.

L'engagement d'CTC sous les termes de garantie applicable n'est pas contraignant si ces instructions ne sont pas suivies lors de l'installation, du fonctionnement et de la maintenance du système.

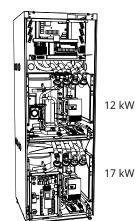
Introduction 6.

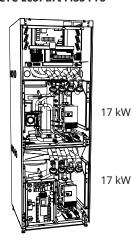

Cette pompe à chaleur est disponible selon de nombreuses versions différentes en fonction de la manière dont vous prévoyez de la contrôler.

- La CTC EcoPart i425-i435 Pro dispose d'une unité CTC EcoLogic L/M intégrée qui contrôle les pompes à chaleur et le circuit de chauffage du bâtiment.
- La CTC EcoPart 425-435 dispose de deux unités CTC Basic Display en standard.

La pompe à chaleur est composée de deux modules de pompe à chaleur disposés l'un sur l'autre. La structure des différents boutons est décrite cidessous.

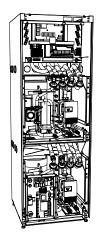
3 x 400V 3N~


CTC EcoPart 425 & CTC EcoPart i425 Pro


8 kW

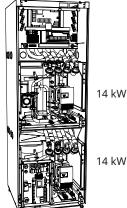
17 kW

CTC EcoPart 430 & CTC EcoPart i430 Pro



CTC EcoPart 435 & CTC EcoPart i435 Pro

1 x 230V 1N~


CTC EcoPart 425 & CTC EcoPart i425 Pro

10 kW

14 kW

CTC EcoPart 430 & CTC EcoPart i430 Pro

14 kW

7. Données techniques

7.1 Tableau 400V 3N~

Caractéristiques électriques	400V 3N~				
		CTC EcoPart i425 Pro		CTC EcoPart i430 Pro	
Туре		KM417EP 2xLEP	KM408EP 2xLEP	KM417EP 2xLEP	KM412EP 2xLEP
Système d'exploitation		CTC EcoL	ogic Pro	CTC Ecol	ogic Pro
Puissance nominale	kW	15	.4	17	.0
Courant nominal	А	22	.2	24	.6
Classe de protection (IP)		IP)	< 1	IP	K1
Courant nominal, module de refroidissement	А	21	.1	23.5	
Fusible de groupe	Α	25		25	
Max courant de démarrage	А	32.0	17.7	32.0	23.5
		CTC Ecol	Part 425	CTC EcoPart 430	
Туре		KM417EP 2xLEP	KM408EP 2xLEP	KM417EP 2xLEP	KM412EP 2xLEP
Système d'exploitation		CTC Basi	c display	CTC Basic display	
Puissance nominale	kW	10	.8	12.4	
Courant nominal	Α	21	,1	23,5	
Classe de protection (IP)		IPX1		IPX1	
Courant nominal, module de refroidissement	Α	A 16.7		19	.7
Fusible de groupe	А	A 25		25	
Max courant de démarrage	Α	32.0	17.7	32.0	23.5

Données opérationnelles pour les PAC		400V 3N~			
Puissance émise 1) à -5/45	kW	13.70	6.72	13.70	9.63
COP 1) @ -5/45		3.11	3.14	3.11	3.17
Puissance émise 1) à 0/35 0/45 0/55	kW	16.24 16.14 15.87	8.19 7.87 7.55	16.24 16.14 15.87	11.75 11.24 10.97
COP 1) @ 0/35 0/45 0/55		4.36 3.61 3.07	4.58 3.64 2.99	4.36 3.61 3.07	4.60 3.66 2.96
Puissance émise 1) à 5/35 5/45 5/55	kW	19.25 18.42 18.16	9.44 9.05 8.65	19.25 18.42 18.16	13.53 12.95 12.57
COP 1) @ 5/35 5/45 5/55		5.02 4.05 3.38	5.02 4.04 3.30	5.02 4.05 3.38	5.11 4.11 3.35
Puissance absorbée 1) @B0/W35 B5/W35 B10/W35	kW	V 1.79 1.88 1.93		2.55 2.65 2.78	
Température ambiante min/max	°C	C 5/30			

¹⁾ EN14511:2007, pompes de circulation inclusives

Circuit d'agent de chaleur	400V 3N~					
Température max. (TS)	°C		100			
Température de service max. condenseur	°C	65				
Pression de fonctionnement eau max. (PS)	bar	6.0				
Volume d'eau (V)	- 1	4.1 2.9 4.1 3.4				
Débit min. du circuit de chaleur 2)	l/s	0.40	0.20	0.40	0.28	
Valeur Kvs Δt = 10 K, débit min.		5.9 (6 kPa) 4.1 (3 kPa) 5.9 (6 kPa) 5.5 (3.5 kPa)				
Débit nominal du circuit de chaleur 3)	l/s	0.81 0.39 0.81 0.56				
Pompe à chaleur à vitesse réglable		LEP (Low Energy Pump)				

 ²⁾ Fonctionnement de la pompe à chaleur à Δt = 15 K et 0/35 °C.
 ³⁾ Fonctionnement de la pompe à chaleur à Δt = 5 K et 0/35 °C.

Circuit d'eau glycolée		400V 3N~				
Volume d'eau (V)	- 1	4.07	2.90	4.07	3.40	
Circuit d'eau glycolée, temp. min./max. (TS)	°C		-5 /	20		
Circuit d'eau glycolée, pression min./max. (PS)	bar	0.2/3.0				
Débit qw minimum B0/W35, Δt = 5K	l/s	0.63	0.31	0.63	0.44	
Débit qc nominal B0/W35, Δt = 3K	l/s	1.05	0.51	1.05	0.73	
Valeur Kvs Δt = 3 K, débit nominal		8.9	5.8	8.9	7.2	
Pompe du circuit d'eau glycolée		Classe A (LEP)				
Capacité de la pompe		Consultez le diagramme dans le chapitre Installation de la tuyauterie				

Autres données		400V 3N~				
Quantité de fluide frigorigène (R407C, effet de serre florissantes GWP 1774)	kg	2.7	1.9	2.7	2.3	
Équivalent CO ₂	ton	8.160 8.870				
Huile du compresseur		Polyolester (POE)				
Limiteur de pression, haute pression	bar	r 31 ±1.0				
Niveau sonore (L _{wa}) conformément à EN 12102 @B0/W35 et B0/W55	dB(A)	A) 50 / 50 53 / 53				
Pression acoustique (L _{PA}) 1m B0/W35 (EN ISO 11203)	dB(A)	A) 45 48				
Poids avec / sans conditionnement	kg	kg 353 / 328 (i425 Pro), 348 / 323 (425 Basic) 371 / 346 (i430 Pro), 369 / 344 (430 Basic)				
Dimensions (profondeur x largeur x hauteur)	mm	673 x 596 x 1760				
Heat pump Keymark Cert. NO.		012-068 012-071				

Ll n'est pas obligatoire de faire une test de fuite de liquide de refroidissement annuellement

Caractéristiques électriques	400V 3N~				
		CTC EcoPart i435 Pro			
Туре		KM417EP 2xLEP	KM417EP 2xLEP		
Système d'exploitation		CTC Ecol	ogic Pro		
Puissance nominale	kW	19	0.4		
Courant nominal	А	28	3,9		
Classe de protection (IP)		IP	X1		
Courant nominal, module de refroidissement	А	27.8			
Fusible de groupe	Α	32			
Max courant de démarrage	A	32.0	32.0		
		CTC Ecol	Part 435		
Туре		KM417EP 2xLEP	KM417EP 2xLEP		
Système d'exploitation		CTC Basi	c display		
Puissance nominale	kW	14	1.8		
Courant nominal	А	27	',8		
Classe de protection (IP)		IPX1			
Courant nominal, module de refroidissement	Α	27.8			
Fusible de groupe	А	32			
Max courant de démarrage	Α	32.0	32.0		

Données opérationnelles pour les PAC 400\	/ 3N~		
Puissance émise 1) à -5/45	kW	13.70	13.70
COP 1) @ -5/45		3.11	3.11
Puissance émise 1) à 0/35 0/45 0/55	kW	16.24 16.14 15.87	16.24 16.14 15.87
COP 1) @ 0/35 0/45 0/55		4.36 3.61 3.07	4.36 3.61 3.07
Puissance émise 1) à 5/35 5/45 5/55	kW	19.25 18.42 18.16	19.25 18.42 18.16
COP 1) @ 5/35 5/45 5/55		5.02 4.05 3.38	5.02 4.05 3.38
Puissance absorbée 1) @B0/W35 B5/W35 B10/W35	kW	3.72 3.	83 3.99
Température ambiante min/max	°C	5 /	30

¹⁾ EN14511:2007, pompes de circulation inclusives

Circuit d'agent de chaleur	400V 3N~			
Température max. (TS)	°C	10	00	
Température de service max. condenseur	°C	65		
Pression de fonctionnement eau max. (PS)	bar	6.0		
Volume d'eau (V)	1	4.1	4.1	
Débit min. du circuit de chaleur 2)	l/s	0.40	0.40	
Valeur Kvs Δt = 10 K, débit min.		5.9 (6 kPa)	5.9 (6 kPa)	
Débit nominal du circuit de chaleur 3)	l/s	0.81	0.81	
Pompe à chaleur à vitesse réglable LEP (Low Energy Pump)				

²⁾ Fonctionnement de la pompe à chaleur à Δt = 15 K et 0/35 °C. ³⁾ Fonctionnement de la pompe à chaleur à Δt = 5 K et 0/35 °C.

Circuit d'eau glycolée	400V 3N~		
Volume d'eau (V)	- 1	4.07	4.07
Circuit d'eau glycolée, temp. min./max. (TS)	°C	-5 /	20
Circuit d'eau glycolée, pression min./max. (PS)	bar	0.2	/ 3.0
Débit qw minimum B0/W35, Δt = 5K	I/s	0.63	0.63
Débit qc nominal B0/W35, Δt = 3K	l/s	1.05	1.05
Valeur Kvs Δt = 3 K, débit nominal		8.9	8.9
Pompe du circuit d'eau glycolée		Classe	A (LEP)
Capacité de la pompe		Consultez le diagramme dan:	s l'Installation de la tuyauterie

Autres données	400V 3N~		
Quantité de fluide frigorigène (R407C, effet de serre florissantes GWP 1774)	kg	2,7	2,7
Équivalent CO ₂	ton	9.5	579
Huile du compresseur		Polyoles	ter (POE)
Limiteur de pression, haute pression	bar	31 :	£1.0
Niveau sonore (L _{WA}) conformément à EN 12102 @B0/W35 et B0/W55	dB(A)	56.	⁷ 56
Pression acoustique (L _{PA}) 1m B0/W35 (EN ISO 11203	dB(A)	5	1
Poids avec / sans conditionnement	kg	377 / 352 (i435 Pro),	374 / 349 (435 Basic)
Dimensions (profondeur x largeur x hauteur)	mm	673 x 59	6 x 1760
Heat pump Keymark Cert. NO.		012	-072

Ll n'est pas obligatoire de faire une test de fuite de liquide de refroidissement annuellement

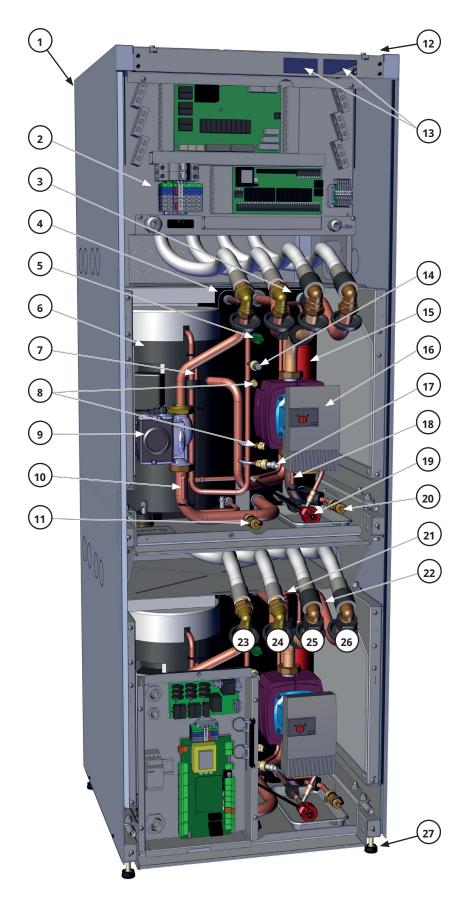
7.2 Tableau 230V 1N~

Caractéristiques électriques		230V 1N~					
· ·		CTC EcoPa	rt i425 Pro	CTC EcoPa	rt i430 Pro		
Туре		KM414EP 2xLEP	KM410EP 2xLEP	KM14EP 2xLEP	KM414EP 2xLEP		
Système d'exploitation		CTC Ecol	ogic Pro	CTC Ecol	ogic Pro		
Puissance nominale	kW	15	5.3	17	7.2		
Courant nominal	А	33.2	25.6	33.2	38.0		
Classe de protection (IP)		IP	X1	IP:	X1		
Courant nominal, module de refroidissement	А	33.2	21.6	33.2	33.2		
Fusible de groupe	Α	63 / 35	32	70 / 35	40		
Max courant de démarrage	А	30.0	30.0	30.0	30.0		
		CTC Ecol	Part 425	CTC EcoPart 430			
Туре		KM414EP 2xLEP	KM410EP 2xLEP	KM414EP 2xLEP	KM414EP 2xLEP		
Système d'exploitation		CTC Basi	c display	CTC Basi	c display		
Puissance nominale	kW	12	2.6	15	5.3		
Courant nominal	Α	33.2	21.6	33.2	33.2		
Classe de protection (IP)		IP	X1	IPX1			
Courant nominal, module de refroidissement	Α	33.2	21.6	33.2	33.2		
Fusible de groupe	А	63 / 35	25	25 70 / 35			
Max courant de démarrage	А	30.0	30.0	30.0	30.0		

Données opérationnelles pour les PAC		230V 1N~						
Puissance émise 1) à -5/45	kW	11.77	8.07	11.77	11.77			
COP 1) @ -5/45		3.18	3.15	3.18	3.18			
Puissance émise 1) à 0/35 0/45 0/55	kW	14.47 13.93 13.40	9.97 9.55 9.28	14.47 13.93 13.40	14.47 13.93 13.40			
COP 1) @ 0/35 0/45 0/55		4.54 3.64 2.95	4.60 3.68 2.98	4.54 3.64 2.95	4.54 3.64 2.95			
Puissance émise 1) à 5/35 5/45 5/55	kW	16.48 15.98 15.28	11.42 10.99 10.58	16.48 15.98 15.28	16.48 15.98 15.28			
COP 1) @ 5/35 5/45 5/55		5.13 4.11 3.28	5.20 4.16 3.28	5.13 4.11 3.28	5.13 4.11 3.28			
Puissance absorbée 1) @B0/W35 B5/W35 B10/W35	kW	2.17 2.	20 2.29	3.19 3.21 3.47				
Température ambiante min/max	°C	5 / 30						

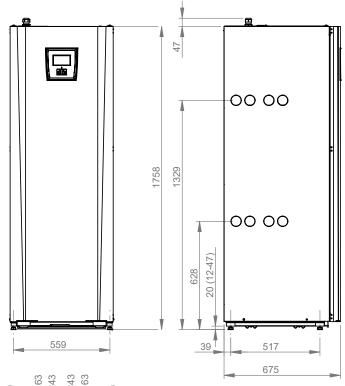
¹⁾ EN14511:2007, pompes de circulation inclusives

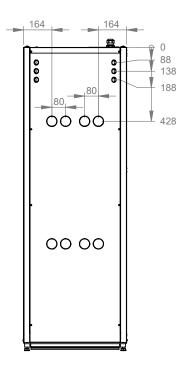
Circuit d'agent de chaleur 230V 1N~								
Température max. (TS)	°C	100						
Température de service max. condenseur	°C	65						
Pression de fonctionnement eau max. (PS)	bar	6.0						
Volume d'eau (V)	1	4.1	2.9	4.1	4.1			
Débit min. du circuit de chaleur 2)	l/s	0.34	0.24	0.34	0.34			
Valeur Kvs Δt = 10 K, débit min.		8.6	4.3	8.6	8.6			
Débit nominal du circuit de chaleur 3)	l/s	0.68 0.48 0.68 0.68						
Pompe à chaleur à vitesse réglable			LEP (Low En	ergy Pump)				

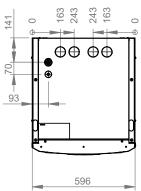

²⁾ Fonctionnement de la pompe à chaleur à Δt = 15 K et 0/35 °C. ³⁾ Fonctionnement de la pompe à chaleur à Δt = 5 K et 0/35 °C.

Circuit d'eau glycolée			230V	1N~			
Volume d'eau (V)	1	4.07	2.90	4.07	4.07		
Circuit d'eau glycolée, temp. min./max. (TS)	°C	-5 / 20					
Circuit d'eau glycolée, pression min./max. (PS)	bar	0.2 / 3.0					
Débit qw minimum B0/W35, Δt = 5K	l/s	0.53	0.38	0.53	0.53		
Débit qc nominal B0/W35, Δt = 3K	l/s	0.88	0.64	0.88	0.88		
Valeur Kvs Δt = 3 K, débit nominal		8.7	8.1	8.7	8.7		
Pompe du circuit d'eau glycolée		Classe A (LEP)					
Capacité de la pompe		Consultez le diagramme dans le chapitre Installation de la tuyauterie					

Autres données			230V	1N~				
Quantité de fluide frigorigène (R407C, effet de serre florissantes GWP 1774)	kg	2.7	1.9	2.7	2.7			
Équivalent CO ₂	ton	8.1	8.160 9.579					
Huile du compresseur		Polyolester (POE)						
Limiteur de pression, haute pression	bar	31 ±1.0						
Niveau sonore (L _{wx}) conformément à EN 12102 @B0/W35 et B0/W55	dB(A)	50 /	50/53 50/					
Pression acoustique (L _{PA}) 1m B0/W35 (EN ISO 11203)	dB(A)	4	5	48				
Poids avec / sans conditionnement	kg	364 / 339 (i425 Pro), 359 / 334 (425 Basic) 382 / 357 (i430 Pro), 380 / 355 (430 Ba						
Dimensions (profondeur x largeur x hauteur)	mm	673 x 596 x 1760						
Heat pump Keymark Cert. NO.		012	-068	012	-071			

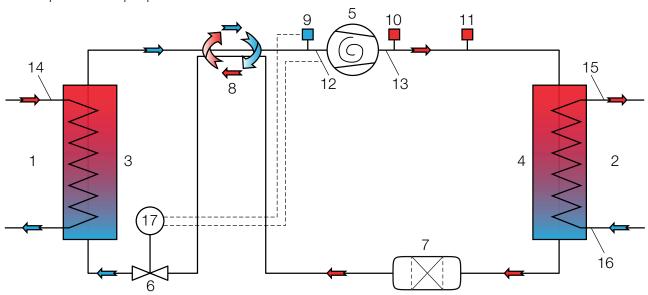

Ll n'est pas obligatoire de faire une test de fuite de liquide de refroidissement annuellement


7.3 Emplacements des composants



- Conduit pour câble de réseau (dissimulé)
- 2. Bornier de câblage
- 3. Condenseur
- 4. Évaporateur
- 5. Pressostat haute pression
- 6. Compresseur
- 7. Sonde de refoulement
- 8. Prise de service
- 9. Pompe à chaleur à basse consommation énergétique
- 10. Entrée de sonde de condenseur
- 11. Soupape de purge côté chaud/
- 12. Conduit pour communication (dissimulé)
- 13. Affichage CTC Basic (version standard CTC EcoPart uniquement)
- 14. Sonde de haute pression
- 15. Filtre déshydrateur
- 16. Pompe d'eau glycolée à basse consommation énergétique
- 17. Sonde de basse pression
- 18. Sortie d'eau glycolée
- 19. Détendeur
- 20. Soupape de purge côté froid/ Eau glycolée
- 21. Sortie de sonde de condenseur
- 22. Entrée d'eau glycolée
- 23. Entrée de chaleur Ø de 28 mm (depuis la HP)
- 24. Sortie de chaleur Ø de 28 mm (depuis la HP)
- 25. Sortie d'eau glycolée Ø de 28 mm (vers la roche)
- 26. Entrée d'eau glycolée Ø de 28 mm (depuis la roche)
- 27. Pied réglable

7.4 Diagramme des dimensions



N'oubliez pas de laisser une zone libre d'au moins 1 mètre devant le produit pour la maintenance.

7.6 Circuit du liquide de refroidissement

Le schéma de principe montre le système du liquide de refroidissement pour chaque module de pompe de chaleur.

- 1. Eau glycolée (source de chaleur)
- 2. Eau
- 3. Évaporateur
- 4. Condenseur
- 5. Compresseur
- 6. Détendeur (électronique)
- 7. Filtre déshydrateur
- 8. Échangeur de chaleur du liquide de refroidissement
- 9. Sonde de basse pression
- 10. Sonde de haute pression
- 11. Pressostat haute pression
- 12. Température de gaz d'aspiration
- 13. Température de décharge
- 4. Température d'eau glycolée
- 15. Température de sortie d'eau
- 16. Température d'entrée d'eau
- 17. Détenteur de commande

7.5 Plage de fonctionnement

La surveillance des opérations contrôlées par la pression de la CTC EcoPart permettent d'augmenter automatiquement la température de l'eau glycolée (B) et la température de l'agent de chaleur (H) dans la mesure du possible.

Condition de fonctionnement :	Temp. B/Temp. H °C
1	-5 / 25
2	20 / 25
3	-5 / 61
4	20 / 64

Les limites de fonctionnement telles que stipulées dans le tableau ci-dessus sont définies conformément à la norme EN 14511-4.

8. Installation

Cette section est destinée à toute personne responsable d'une ou de plusieurs des installations nécessaires pour s'assurer que le produit fonctionne de la façon dont le propriétaire le souhaite.

Prenez le temps de présenter les fonctions et les réglages au propriétaire et de répondre à ses questions. Vous et la pompe à chaleur avez tout à gagner d'un utilisateur qui a parfaitement compris comment le système fonctionne et doit être entretenu.

L'installation doit être effectuée conformément aux normes et règlements en vigueur. Consultez MIS 3005 et les règlementations associées du bâtiment Parties L, F et G. Le produit doit être raccordé à un vase d'expansion dans un système ouvert ou fermé. N'oubliez pas de rincer le circuit de chauffage avant d'effectuer le raccordement. Effectuez tous les réglages d'installation selon la description dans le chapitre sur le « Premier démarrage ».

La pompe à chaleur fonctionne à une température de départ/retour à travers le condenseur jusqu'à 65/58 °C.

Transport

Transportez l'appareil sur le site d'installation avant de retirer l'emballage. Manipulez le produit de la manière suivante :

- Chariot élévateur
- Sangle de levage autour de la palette. N. B.: cette méthode ne peut être utilisée que lorsque l'emballage est encore en place.

Déballage

Déballez la pompe à chaleur quand elle est placée à côté de son site d'installation. Vérifiez que le produit n'a pas été abîmé lors du transport. Signalez tout dommage de transport au transporteur. Contrôlez également que la livraison est complète conformément à la liste ci-dessous.

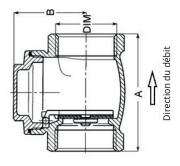
8.1 La livraison comprend

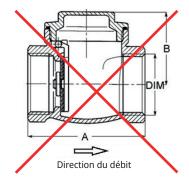
Câbles d'alimentation:

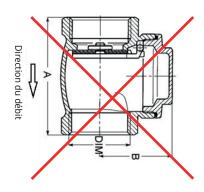
3x400V = 1 pce

1x230V = 2 pces

CTC EcoPart i425-i435 Pro (avec CTC EcoLogic L):


- 1 soupape de sécurité de ½" 3 bar
- 1 sonde d'ambiance
- 3 capteurs 22K L=2,500 mm
- 1 sonde d'extérieur
- 4 clapets anti-retour de 1¼"
- 4 filtres d'impuretés de 1¼"
- 4 œillets en caoutchouc D = 60
- 4 moulages de bord de 186 mm
- 2 moulages de bord de 700 mm
- Manuel d'installation et de maintenance CTC EcoLogic L/M

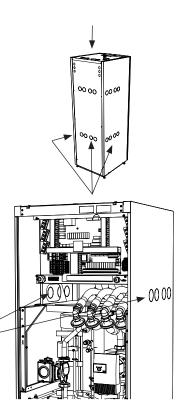

Le produit doit être transporté et entreposé en position verticale.


CTC EcoPart 425-435 (avec deux unités CTC Basic Display):

- 1 soupape de sécurité de ½" 3 bar
- 4 clapets anti-retour de 11/4"
- 4 filtres d'impuretés de 1¼"
- 4 œillets en caoutchouc D = 60
- 4 moulages de bord de 186 mm
- 2 moulages de bord de 700 mm
- Manuel d'installation et de maintenance CTC Basic Display

8.1.1 Clapet anti-retour 1 1/4"

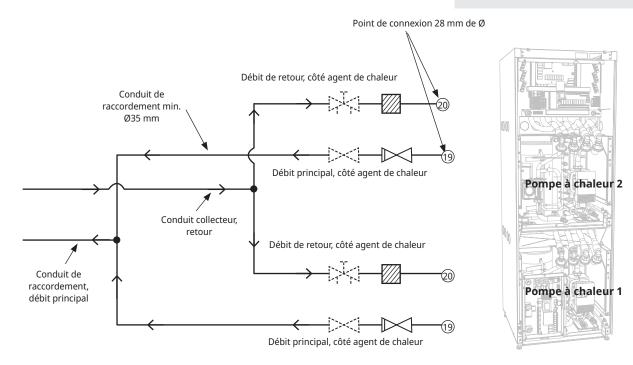
8.2 Raccordement


Le raccordement peut être fait sur la droite, sur la gauche, au sommet ou à l'arrière de la pompe à chaleur. Coupez la plaque de protection du côté sur leguel les tuyaux doivent être raccordés. Une fois l'ouverture ménagée à travers la plaque de protection, effectuez l'installation comme suit :

- Afin de protéger les tuyaux, attachez la bordure de protection fournie sur le pourtour de l'ouverture ménagée dans la plaque d'isolation. Ajustez la longueur de la bordure de protection en fonction de l'ouverture selon les besoins.
- Passez les tuyaux à travers l'ouverture dans les plaques de protection latérales et raccordez-les. Veillez à ce que l'isolation couvre toutes les parties du raccordement d'eau glycolée pour empêcher la formation de glace et de condensation.
- Installez ensuite le système collecteur.

Vous pouvez également raccorder le débit primaire d'un côté et le retour de l'autre côté. Voir la section intitulée « Informations de mesure pour les mesures et les dimensions ». Le tuyau entre la pompe à chaleur et la boucle d'eau glycolée ne doit pas être inférieur à Ø35 mm.

Lorsqu'un collecteur est raccordé, l'ouverture doit être alignée avec le moulage de bord fourni pour éviter le frottement du tuyau.

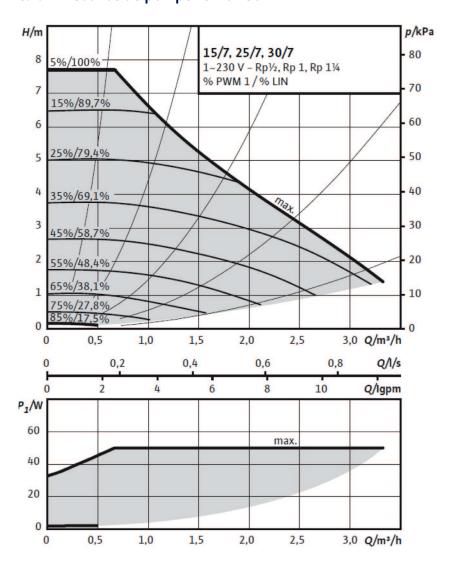

8.3 Côté agent de chaleur

Raccordez la pompe à chaleur avec un tuyau d'au moins Ø35 mm, afin qu'il puisse être fixé à un conduit collecteur. Le clapet anti-retour et le filtre d'impuretés sont de 1¼". La dimension du conduit collecteur dépend de l'installation.

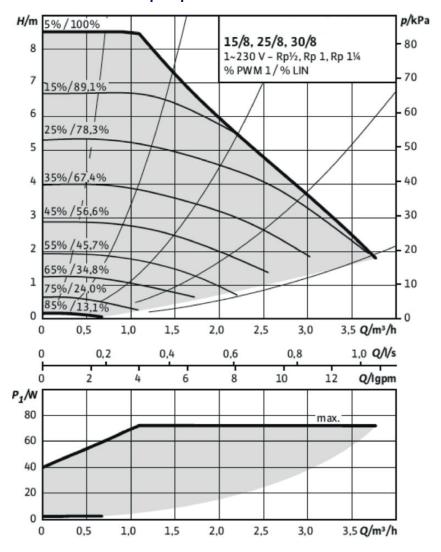
Acheminez les conduits afin qu'il n'y ait pas d'autre point élevé où l'air peut s'accumuler et bloquer la circulation. Toutefois, si ceci ne peut pas être fait, équipez le point le plus élevé d'un purgeur automatique.

N. B. : Seul(e) une pompe à chaleur/un module de refroidissement peut être connecté(e) à la vanne de répartition disponible en accessoire.

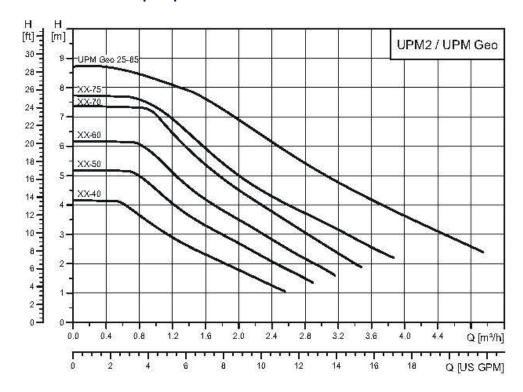
Il est très important que les conduits de raccordement soient de la même conception, afin de pouvoir obtenir une chute de pression aussi égale que possible dans les deux ensembles de tuyaux (dimensions de tuyau, coudes, etc.).



8.4 Pompes de circulation, côté agent de chaleur


La pompe à chaleur est fournie avec deux LEP qui sont des pompes de charge à basse consommation énergétique installées en usine.

Pompe de circulation 8kW	25/70-130	Prod. nº 587477 303
Pompe de circulation 10-12kW	25/80-130	Prod. nº 587477 302
Pompe de circulation 14-17kW	25/85-130	Prod. nº 587477 301


8.4.1 Courbe de pompe 25/70-130

8.4.2 Courbe de pompe 25/80-130

8.4.3 Courbe de pompe 25/85-130

8.5 Circuit d'eau glycolée

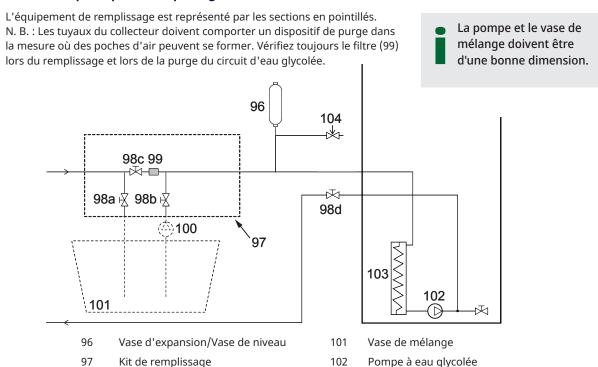
Le circuit d'eau glycolée, c'est à dire le serpentin du collecteur de sol, doit être assemblé et raccordé par un professionnel qualifié conformément aux réglementations et aux directives de conception en vigueur.


Un soin extrême doit être observé afin que la saleté ne s'accumule pas sur les tuyaux du collecteur qui doivent être lavés avant d'être connectés. Les capuchons de protection doivent rester en place durant toute la durée du travail.

La température du système d'eau glycolée peut descendre en dessous de 0 °C. Il est donc important que des lubrifiants à base d'eau et similaires ne soient pas utilisés pendant l'installation. Il est également essentiel que tous les composants soient isolés contre la condensation afin d'éviter la formation de glace.

Nous vous recommandons de suivre les instructions d'installation de l'Association locale des pompes à chaleur.

Il est très important que les conduits de raccordement soient de la même conception, afin de pouvoir obtenir une chute de pression aussi égale que possible dans les deux ensembles de tuyaux (dimensions de tuyau, coudes etc.)


Filtre d'impuretés

Soupape de commande

Clapet anti-retour

Robinet d'arrêt

Schéma de principe de remplissage

103

104

Évaporateur

Soupape de sécurité 3 bars

Vannes

Pour faciliter l'entretien de l'unité de refroidissement, des vannes d'arrêt doivent être installées sur les raccords d'entrée et de sortie. Montez les vannes bifurquées de manière à pouvoir remplir et purger le circuit du collecteur plus tard.

Pompe de remplissage externe

Robinet d'arrêt

Filtre CTC

Purge

Le circuit du collecteur ne doit pas contenir d'air. Même une toute petite quantité d'air résiduel risque de nuire au fonctionnement de la pompe à chaleur, voir « Remplissage et purge » ci-dessous.

Isolation contre la condensation

98

99

100

Tous les tuyaux dans le circuit d'eau glycolée doivent être isolés contre la condensation pour empêcher que se forme une accumulation importante de glace et de condensation.

Remplissage et ventilation

Mélangez l'eau et la solution antigel dans un récipient ouvert. Raccordez les tuyaux aux vannes d'arrêt (98a et 98b) comme indiqué sur la figure. Connectez une pompe externe puissante (101) pour le remplissage et la purge. Réinitialisez ensuite la vanne à trois voies (100) et ouvrez les vannes (98a et 98b) afin que l'eau glycolée traverse le récipient de mélange (102). Vérifiez aussi que la vanne (98d) est ouverte.

Pour le démarrage de la pompe d'eau glycolée, consultez le manuel pertinent pour le contrôleur EcoPart.

Laissez l'eau glycolée circuler dans le système pendant une longue période de temps jusqu'à ce que tout l'air soit évacué. Il se peut qu'il y ait encore de l'air dans le système même s'il n'y a pas d'air dans le liquide sortant. Réinitialisez la vanne trois voies (100), afin que l'air restant puisse sortir.

Purgez le vase de niveau (96) en desserrant le bouchon en haut de celui-ci. Maintenant, fermez la vanne (98a) tandis que la pompe de remplissage continue de fonctionner. La pompe de remplissage (101) pressurise maintenant le système. Fermez également la vanne (98b) et arrêtez la pompe de remplissage.

Si le niveau dans le vaisseau de niveau est trop bas, fermez les vannes (98c) et (98d). Dévissez le bouchon et remplissez le vase aux 2/3 environ. Vissez le bouchon en place et ouvrez les vannes (98c) et (98d).

Vérification du circuit d'eau glycolée après l'installation

Après quelques jours, vous devez vérifier le niveau du liquide dans le vase. Remplissez si nécessaire et fermez les vannes (98c et 98d) lors du remplissage.

Vase d'expansion/Vase de niveau

Le vase de niveau doit être raccordé à la ligne d'arrivée du serpentin de sol ou du trou de forage au point culminant du système. Gardez à l'esprit que le ballon peut produire des condensats sur sa surface extérieure. Montez la soupape de sécurité (105) comme indiqué sur le schéma de principe et montez un bouchon adéquat sur le dessus du vase.

Si le vase ne peut pas être installé au point le plus haut, un vase d'expansion fermé doit être utilisé.

Kit de remplissage avec filtre d'impuretés

Les flèches sur le carter de la vanne indiquent le sens du débit. Fermez les vannes (98c et 100) lors du nettoyage du filtre. Dévissez le bouchon du filtre et rincez le filtre jusqu'à ce qu'il soit propre. Lors du remontage, la goupille sous le support du filtre doit être introduite dans le trou prévu à cet effet dans le boîtier du filtre. Ajoutez un peu d'eau glycolée, si nécessaire, avant de remettre le bouchon.

Le filtre doit être vérifié et nettoyé après une courte période de fonctionnement.

Eau glycolée

L'eau glycolée circule dans un système fermé. Le liquide est composé d'eau et d'antigel. Sentinel R500 & R500C sont recommandés pour utilisation dans le circuit d'eau glycolée. Le glycol est mélangé à une concentration d'un peu moins de 30 %, ce qui correspond au risque d'incendie de classe 2b et à un point de congélation d'environ $-15\,^{\circ}\text{C}$.

CTC recommande d'utiliser environ 1 litre d'eau glycolée/glycol par mètre de tuyau de collecteur, c.-à-d. qu'environ 0,3 litre de solution antigel sera nécessaire par mètre de tuyau pour un diamètre de tuyau de 40 mm.

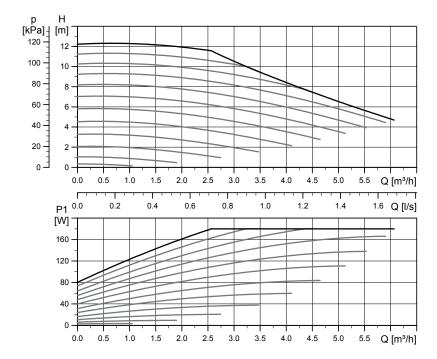
Poches d'air

Pour éviter les poches d'air, vérifiez que les tuyaux du collecteur montent toujours vers la pompe à chaleur. Si ce n'est pas possible, il doit être possible de purger le système aux points élevés. La pompe de remplissage gère habituellement les petits écarts de hauteur.

Vérification des différences de température de l'eau glycolée

Lorsque la pompe à chaleur est en marche, vérifiez régulièrement que la différence de température entre l'eau glycolée entrante et l'eau glycolée sortante n'est pas trop importante. Si il y a une grande différence, ceci peut être dû à la présence d'air dans le système ou à un filtre bouché. Dans ce cas, la pompe à chaleur envoie une alarme.

Le réglage d'usine de l'alarme est de 7 °C, mais 9 °C est autorisé pendant les 72 premières heures quand le compresseur est en marche dans la mesure où des micro-bulles dans le système de peuvent réduire le débit de l'eau glycolée.


 Contrôlez le filtre
 d'impuretés une fois la purge terminée.

 Le liquide doit être bien mélangé avant que la pompe à chaleur soit démarrée.

8.6 Pompe à eau glycolée

Les pompes de circulation des produits CTC affichent une efficacité énergétique de catégorie A.

25/125-180 PWM, 1x230V, 50/60Hz, 12kW

9. Installation électrique

L'installation et le raccordement de la pompe à chaleur doivent être effectués par un électricien agréé. Tout le câblage doit être réalisé conformément aux dispositions applicables.

- La CTC EcoPart 3x400V doit être raccordée au réseau 400V, 3N~, 50Hz et à la terre de protection.
- La CTC EcoPart 1x230V doit être raccordée au réseau 230V, 1N~, 50Hz et à la terre de protection.

La taille minimum du disjoncteur est indiquée dans « Courant nominal » à la section « Données techniques ».

Utilisez le câble fourni pour connecter à l'alimentation. Le produit est déjà câblé à l'intérieur.

Disjoncteur unipolaire

En fonction de la catégorie de surtension III, un disjoncteur différentiel omnipolaire doit être installé en amont de l'installation pour assurer la déconnexion de toutes les sources d'alimentation électrique.

9.1 Sortie Alarme

L'EcoPart est fournie avec une sortie alarme libre de potentiel qui est activée si une alarme est active dans la pompe à chaleur. Cette sortie peut être connectée à une charge maximum de 1A, 250V CA. Un contacteur externe doit aussi être utilisé. Un câble approuvé pour une tension de 230V CA doit être utilisé pour raccorder cette sortie, quelle que soit la charge qui est connectée. Pour les informations de raccordement, consultez le schéma de principe.

9.2 Chauffage à l'eau souterraine

L'eau souterraine peut également être utilisée en tant que source de chaleur pour les pompes à chaleur CTC. L'eau souterraine est pompée vers un échangeur de chaleur intermédiaire qui transfère l'énergie au liquide glycolée. Il est important qu'un échangeur de chaleur intermédiaire soit installé dans le système. L'échangeur de chaleur intermédiaire empêche l'évaporateur du produit d'être endommagé par des dépôts dus à des minéraux et des particules dans l'eau souterraine, ce qui risquerait d'entraîner des travaux coûteux sur le système réfrigérant du produit. Une analyse des exigences d'eau doit toujours être entreprise pour les échangeurs de chaleur intermédiaires. Les réglementations locales et les autorisations exigées doivent être prises en compte. L'eau de retour est évacuée ailleurs, vers un puits jaillissant foré ou similaire.

Respectez également les instructions du fournisseur de l'échangeur de chaleur.

La pompe d'eau glycolée et la pompe d'eau souterraine doivent être raccordées pour fonctionner simultanément afin d'éviter tout risque de gel.

Gros plan du schéma de câblage.

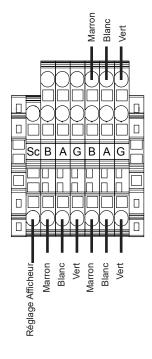
10. Raccordement du circuit de commande

La CTC EcoPart i425-i435 Pro est disponible en deux versions.

- La CTC EcoPart i425-i435 Pro dispose d'une unité de commande CTC EcoLogic L intégrée à écran tactile.
- Pour sa part, la CTC EcoPart 425-435 dispose de deux unités CTC Basic Display connectées à chaque module de refroidissement.
 L'affichage gauche est connecté au module de refroidissement inférieur (A1), tandis que l'affichage droit est connecté au module de refroidissement supérieur (A2).

Toutes les pompes à chaleur sont attribuées (en usine) à A1 – le module de refroidissement inférieur et à A2 – le module de refroidissement supérieur. Pour modifier l'attribution (p. ex. A2 à A3), consultez le manuel pour l'affichage CTC Basic Display.

A2 A1

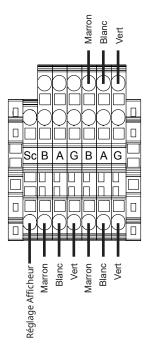

ais .

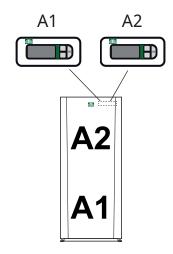
Les deux modèles sont attribués en usine comme indiqué ci-dessus.

10.1 CTC EcoPart i425-i435 Pro

Le version Pro est équipée de CTC EcoLogic L et peut contrôler jusqu'à 5 produits (10 modules de refroidissement).

CTC EcoLogic L

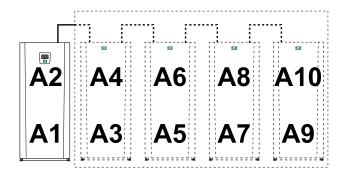

CTC EcoPart i425-i435 Pro


Bornier de communication sur la version Pro.

10.2 CTC EcoPart 425-435

La CTC EcoPart 425-435 dispose de deux unités CTC Basic Display montées derrière le panneau avant.

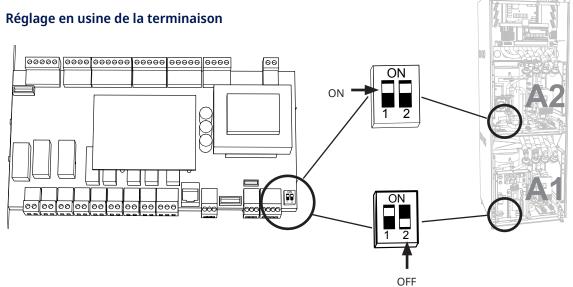
Les affichages sont utilisés pour définir l'adresse des modules de refroidissement lors de la connexion de plus d'1 produit (2 modules de refroidissement) en série, par exemple A2 à A4 et A1 à A3, etc. Consultez le manuel d'affichage de base CTC pour de plus amples informations.



L'affichage gauche est connecté au module de refroidissement inférieur (A1) alors que l'affichage droit est connecté au module de refroidissement supérieur (A2).

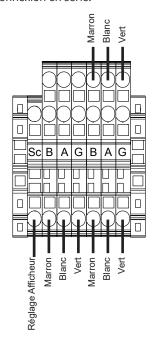
10.3 Raccordement en série des pompes à chaleur

Lorsque plus d'un produit (deux modules de refroidissement) est connecté, les modules de refroidissement subséquents doivent être attribués correctement. L'affichage CTC Basic Display sur ces produits peut être utilisé pour nommer ces produits, comme montré ci-dessous ; consultez le manuel de l'affichage CTC Basic Display.

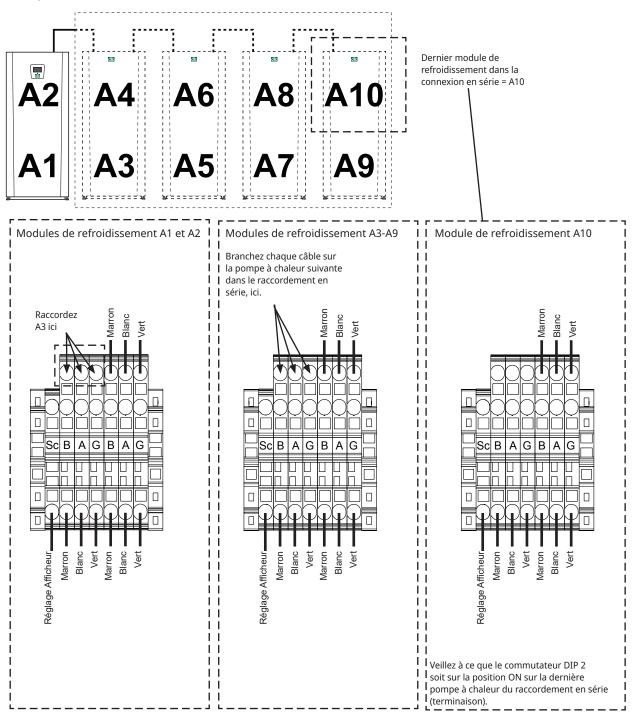

La dernière pompe à chaleur (le module de refroidissement) connectée en série doit être terminée en partie et le blindage dans le câble de communication doit être connecté à la terre, voir ci-dessous.

10.3.1 Position terminée

La dernière pompe connectée en série doit être terminée. Ceci est accompli à l'aide d'un commutateur DIP situé sur la carte de circuit imprimée à l'intérieur de l'armoire électrique.


Le module de refroidissement supérieur A2 est terminé en usine, c.-à-d. que le commutateur DIP 2 se trouve en position ON. Dans le module de refroidissement inférieur A1, le commutateur DIP 2 se trouve en position OFF. Veillez à ce que le commutateur DIP 2 soit sur la position ON sur le module qui doit être terminé.

Le commutateur DIP 1 est réglé qu'un affichage CTC Basic Display soit connecté ou nom. C'est pour cette raison qu'il est réglé sur OFF dans la version Pro et sur ON dans la version standard de la pompe à chaleur.


10.3.2 Communication blindée

Lorsqu'il y a une connexion en série, la boucle qui connecte la position Sc du bornier de commande et PE sur le bornier d'alimentation doit également être enlevée et remplacée par le blindage, qui est ensuite connecté à la pompe à chaleur suivante (position du bornier de commande Sc). Ceci doit être fait sur toutes les pompes à chaleur hormis le dernier module de refroidissement dans la connexion en série.

10.3.3 Exemple de connexion en série

Pompes à chaleur en connexion en série

Positions des commutateurs DIP dans l'exemple

Module de refroidissement	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10
Le commutateur DIP 1 active l'affichage CTC Basic	Arrêt	Arrêt	On	On	On	On	On	On	On	On
Display										
Terminaison du commutateur DIP 2	Arrêt	Arrêt	On							

10.4 Raccordement du circuit de commande

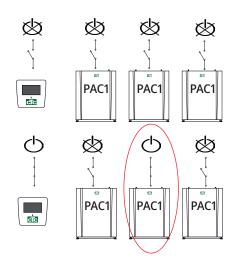
10.4.1 Définissez le nombre de pompes à chaleur

Définissez les pompes à chaleur dans l'affichage de l'unité de commande sous : « Définir système/Avancé/Pompe à chaleur ».

Réglez les pompes à chaleur contenues dans le système sur la position « On ».

Exemple de système avec 3 pompes à chaleur.

10.4.2 Numérotation de CTC EcoPart en tant que PAC2


Applicable au contrôle lancé en octobre 2020 avec trois connecteurs à l'arrière de l'afficheur. 2 RJ-45 et 1 RJ-12.

- 1. Système hors tension.
- 2. Activez l'unité de commande (EcoLogic Pro ou EcoZenith i555 Pro) ainsi que la CTC EcoPart 600M à numéroter comme Pompe à chaleur 2 (PAC2).
- 3. Attendez environ 2 minutes.
- 4. Allez à « Installateur/Service/Reg. Adresse ».

Sélectionnez « Adresse actuelle », appuyez sur OK et appuyez sur la flèche vers le bas jusqu'à ce que la pompe à chaleur actuelle apparaisse (PAC1). Appuyez sur OK.

Sélectionnez « Nouvelle Adresse », appuyez sur OK et utilisez la flèche pour naviguer vers le haut et le bas jusqu'à ce que l'adresse actuelle de la pompe à chaleur soit affichée (PAC2). Appuyez sur OK.

5. La pompe à chaleur est maintenant numérotée (PAC2).

Lorsque vous appuyez sur OK, (PAC1 et PAC3)* disparaît et la ligne « Adresse actuelle/Nouvelle Adresse » devient noire.

*Dans cet exemple, nous avons assumé que la pompe à chaleur s'appelle PAC1, soit le réglage par défaut de l'usine. Si la pompe à chaleur a déjà été renumérotée, sélectionnez ce numéro à la place.

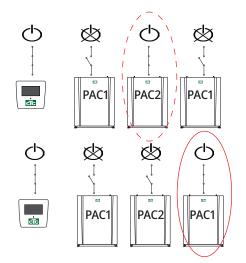
6. Pour numéroter les autres pompes à chaleur :

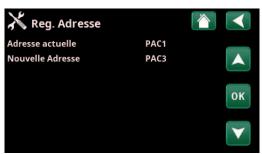
Mettez sous tension la prochaine pompe à chaleur, qui sera numérotée Pompe à chaleur 3 (PAC3).

- 7. Attendez 2 minutes.
- 8. Allez à « Service/Reg. Adresse ».

Sélectionnez « Adresse actuelle », appuyez sur OK et appuyez sur la flèche vers le bas jusqu'à ce que la pompe à chaleur actuelle apparaisse (PAC1). Appuyez sur OK.

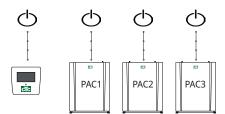
Sélectionnez « Nouvelle Adresse », appuyez sur OK et appuyez sur la flèche vers le haut jusqu'à ce que la pompe à chaleur actuelle apparaisse (PAC3). Appuyez sur OK.


9. La pompe à chaleur est maintenant numérotée (PAC3).


Lorsque vous appuyez sur OK, (PAC1 et PAC3)* disparaît et la ligne « Adresse actuelle/Nouvelle Adresse » devient noire.

*Dans cet exemple, nous avons assumé que la pompe à chaleur s'appelle PAC1, soit le réglage par défaut de l'usine. Si la pompe à chaleur a déjà été renumérotée, sélectionnez ce numéro à la place.

10. Répétez la procédure en fonction du nombre de pompes à chaleur à numéroter.



Une fois que toutes les pompes à chaleur sont numérotées et activées, elles doivent être affichées lorsque vous appuyez sur le symbole de la pompe à chaleur dans le menu « État Installation ». Si une pompe à chaleur n'apparaît pas dans le menu (la communication avec la pompe à chaleur échoue), c'est peut-être parce qu'elle n'a pas été numérotée comme décrit ci-dessus.

Si vous ne connaissez pas le nom de la pompe à chaleur, vous pouvez réinitialiser la numérotation en utilisant le menu « Choisir/renommer la pompe à chaleur » (voir les points 9 et 10 ci-dessus) pour indiquer tous les noms possibles de la pompe à chaleur, c'est-à-dire que vous sélectionnez et confirmez PAC1, puis PAC2 jusqu'à PAC10 pour vous assurer que le nom correct est attribué.

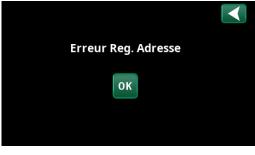
Enfin, testez dans le menu « Installateur/Service/Test fonction/ Pompe à chaleur » que chaque pompe à chaleur démarre.

10.4.3 À savoir lors du réglage de l'adresse

Erreur de réglage de l'adresse

La pompe à chaleur n'a pas pu être trouvée et numérotée.

Le nom de la pompe à chaleur n'était pas le nom escompté.

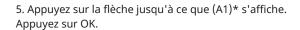

Aucune communication avec la pompe à chaleur.

Vérifiez que la pompe à chaleur est bien sous tension.

En cas d'échec du réglage de l'adresse, les dernières adresses de la pompe à chaleur sont conservées. Dans cet exemple PAC1 et PAC2.

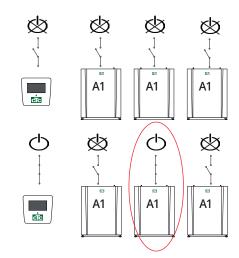
Vérifiez que la pompe à chaleur est sous tension.

Réessayez avec une nouvelle adresse actuelle.

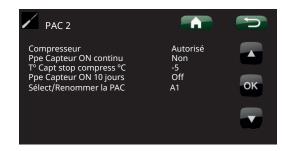

10.4.4 Numérotation de CTC EcoPart en tant que A2

Applicable aux anciens contrôles avec 2 connecteurs à l'arrière de l'afficheur.

1 RJ-45 et 1 RJ-12 pour CTC EcoZenith i550 Pro et CTC EcoLogic Pro/Family.



- 1. Système hors tension.
- 2. Activez l'unité de commande (EcoLogic Pro ou EcoZenith i550 Pro) ainsi que la CTC EcoPart 600M à numéroter comme Pompe à chaleur 2 (A2).
- 3. Attendez env. 2 minutes jusqu'à ce que la pompe à chaleur soit visible dans le menu « État Installation ».
- 4. Allez à Installateur/Réglages/PAC 2 et la ligne « Choisir/Renommer PAC ». Appuyez sur OK.

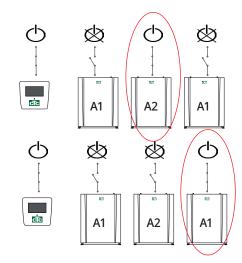

Quand vous appuyez sur OK, (A1)* disparaît et la ligne « Choisir/Renommer pompe à chaleur » devient noire.

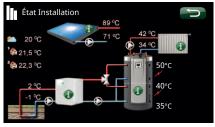
*Dans cet exemple, nous avons assumé que la pompe à chaleur s'appelle A1, soit le réglage par défaut de l'usine. Si la pompe à chaleur a déjà été renumérotée, sélectionnez ce numéro à la place.

6. La pompe à chaleur est maintenant numérotée (A2).

7. Pour numéroter les autres pompes à chaleur :

Activez la commande et la pompe à chaleur suivante à numéroter, qui sera numérotée pompe 3 (A3).

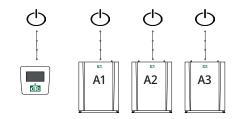

8. Attendez env. 2 minutes jusqu'à ce que la pompe à chaleur soit visible dans les informations opérationnelles


9. Allez à Installateur/Réglages/PAC 3 et la ligne « Choisir/Renommer PAC ». Appuyez sur OK.

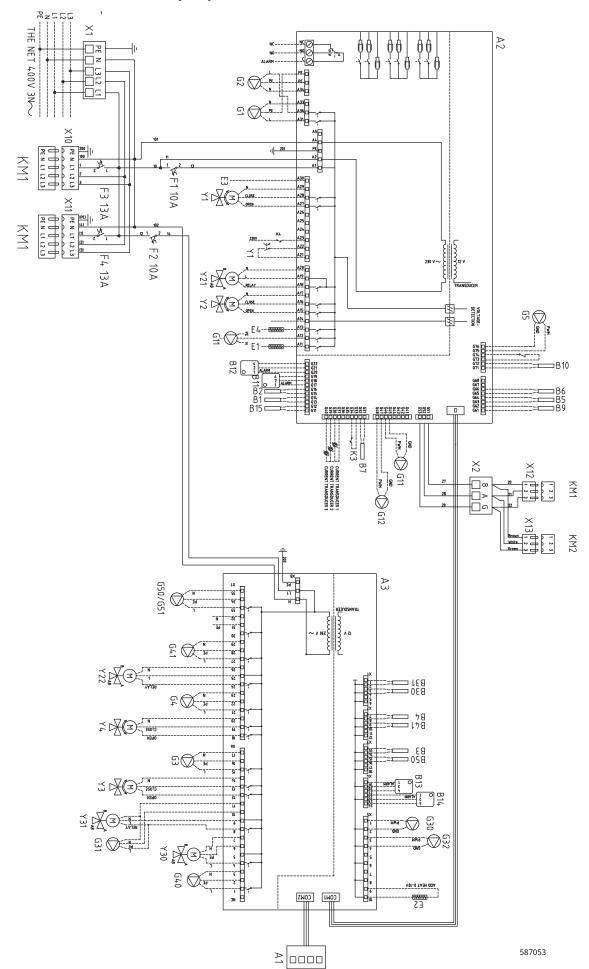
10. Appuyez sur la flèche jusqu'à ce que (A1)* s'affiche. Appuyez sur OK.

Quand vous appuyez sur OK, (A1)* disparaît et la ligne « Choisir/Renommer pompe à chaleur » devient noire. La pompe à chaleur est maintenant numérotée (A3).

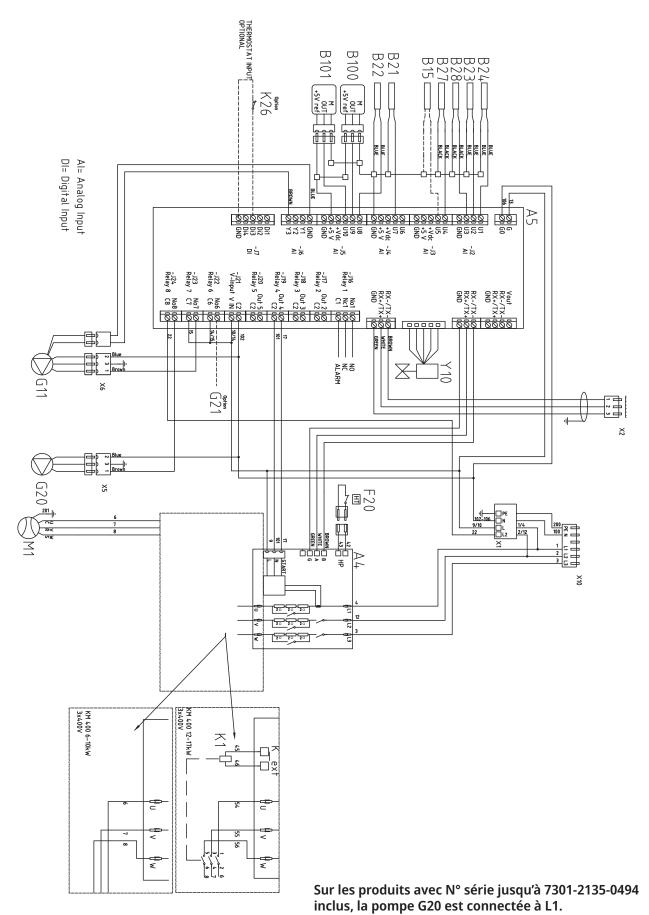
*Dans cet exemple, nous avons assumé que la pompe à chaleur s'appelle A1, soit le réglage par défaut de l'usine. Si la pompe à chaleur a déjà été renumérotée, sélectionnez ce numéro à la place.



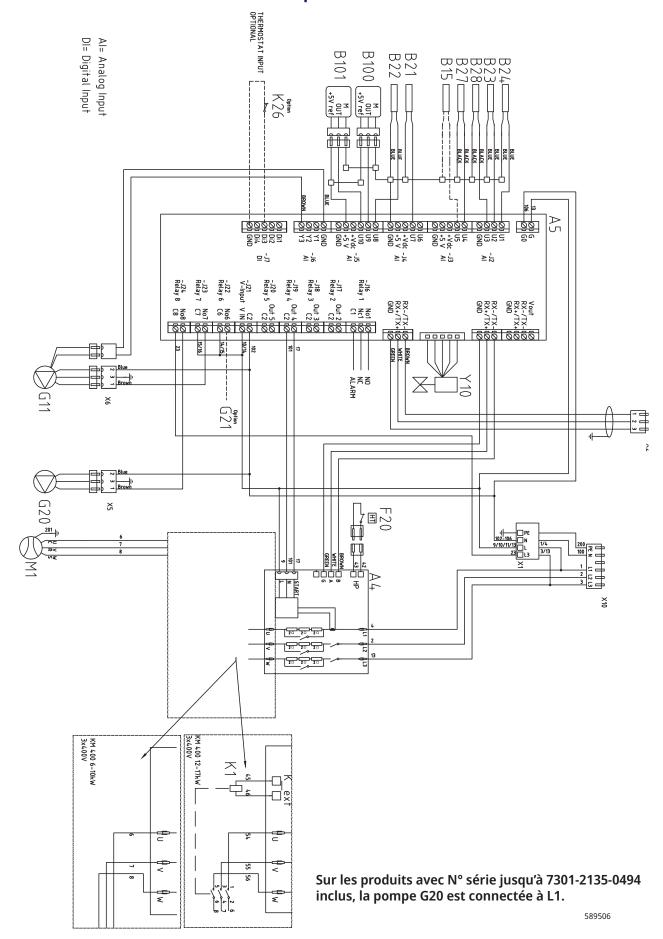
11. Répétez la procédure en fonction du nombre de pompes à chaleur à numéroter.


Une fois que toutes les pompes à chaleur sont numérotées et activées, elles doivent être affichées lorsque vous appuyez sur le symbole de la pompe à chaleur dans le menu « État Installation ». Si une pompe à chaleur n'apparaît pas dans le menu (la communication avec la pompe à chaleur échoue), c'est peut-être parce qu'elle n'a pas été numérotée comme décrit ci-dessus.

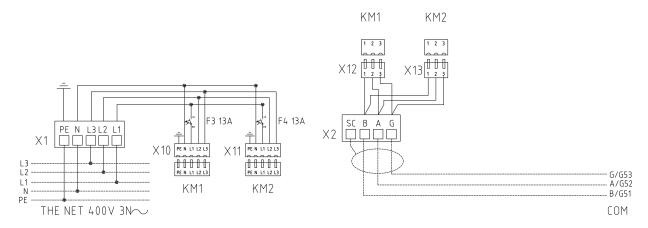
Si vous ne connaissez pas le nom de la pompe à chaleur, vous pouvez réinitialiser la numérotation en utilisant le menu « Choisir/renommer la pompe à chaleur » (voir les points 9 et 10 ci-dessus) pour indiquer tous les noms possibles de la pompe à chaleur, c'est-à-dire que vous sélectionnez et confirmez A1, puis A2 jusqu'à A10 pour vous assurer que le nom correct est attribué.


Enfin, testez dans le menu « Service/Avancé/Test de fonctionnement/Pompe à chaleur » que chaque pompe à chaleur démarre.

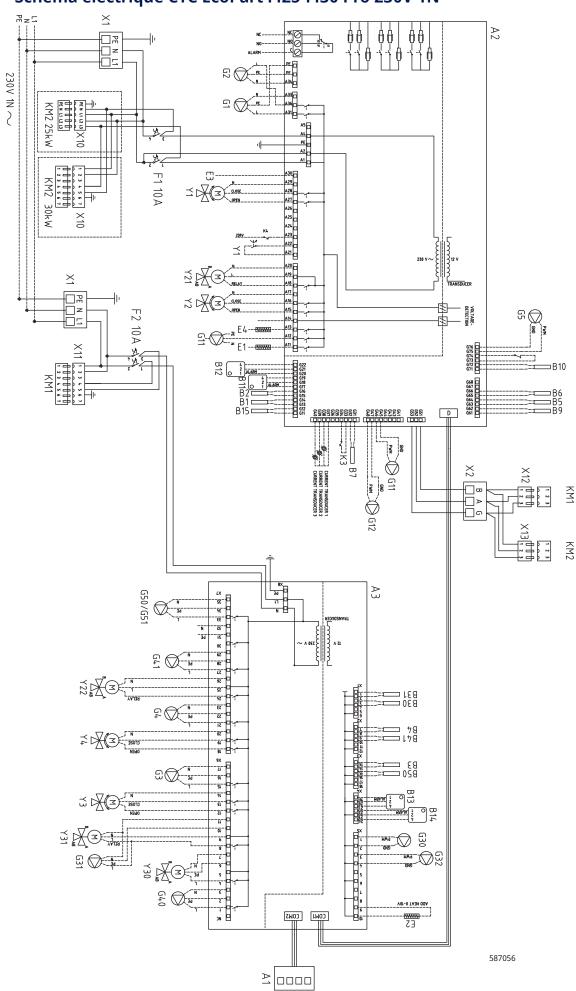
10.5 Schéma électrique pour CTC i425-i435 Pro 400V 3N~



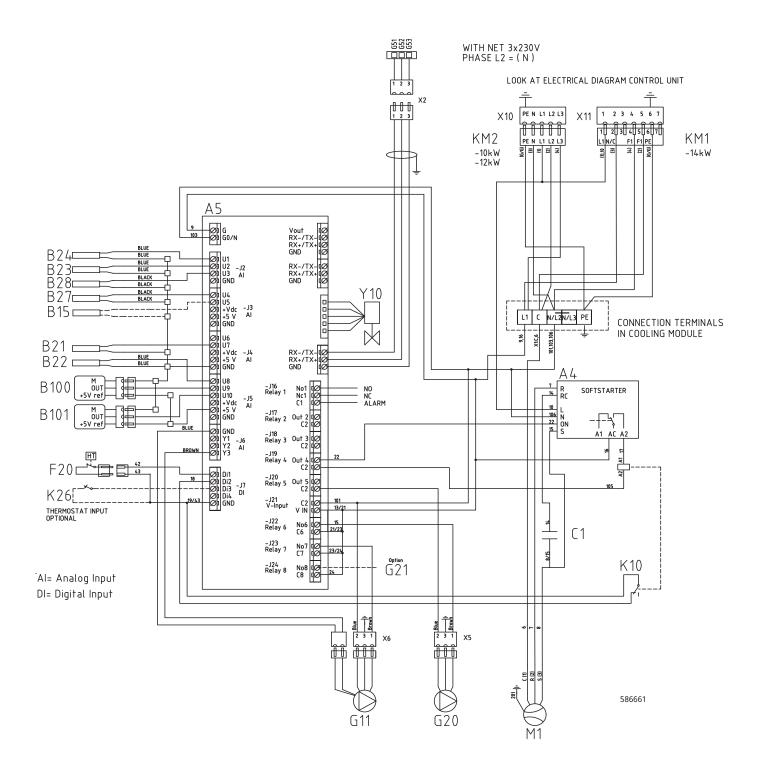
10.6 Schéma électrique, module de refroidissement inférieur 400V 3N~ L2


589507

10.7 Schéma électrique, module de refroidissement supérieur 400V 3N~ L3

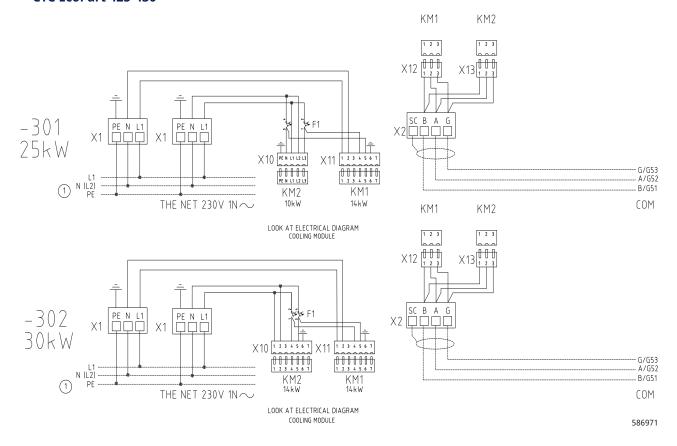

10.8 Alimentation et communication 400V 3N~

CTC EcoPart 425-435



586970

10.9 Schéma électrique CTC EcoPart i425-i430 Pro 230V 1N~



10.10 Schéma électrique module de refroidissement 230V 1N~

10.11 Alimentation et communication 230V 1N~

CTC EcoPart 425-430

WITH NET 3x230V \(\cdot\)
USE PHASE L2 (N)

10.12 Tableau de connexion carte de relais (Tous les modèles de pompes à chaleur)

Ce tableau spécifie les connexions sur la carte de relais A2 (ou la Carte Extension-A3), voir le schéma de câblage.

Connexion	Désignation	Option	Carte	Bornier de connexion	Câble
E1	Appoint		A2 X1 X1	A11 N PE	Sortie Relais
E2	Appoint, 0-3 étape 0-7 étape	x	A2 A2 A2 A2 A2 A2 A2 X1	EL1A EL2A EL1A+EL2A EL3A EL1A+EL3A EL1A+EL3A N PE	
E2	Appoint, 0-10V	х	A3 A3	X5: 9 X5: 10	
E3	Appoint, EcoMiniEl 0-3 étape		A2 X1 X1	A30 N PE	Komm 230V
E4	Appoint, ECS		A2 X1 X1	A13 N PE	Sortie Relais
G1	Pompe Circ 1		A2 A2 A2	A31 PE A33	Phase PE GND
G2	Pompe Circ 2		A2 A2 A2	A36 PE A34	Phase PE GND
G3*	Pompe Circ 3	Х	A3 A3 A3	X6: 15 X6: 16 X6: 17	Phase PE GND
G4*	Pompe Circ 4	Х	A3 A3 A3	X7: 21 X7: 22 X7: 23	Phase PE GND
G5	Pompe de circulation, ECS-échangeur		A2 A2	G75 G76	PWM+ GND
G11	Pompe de charge PAC1		A2 A2 A2	G45 G46 A12	GND PWM+ Sortie Relais
G12	Pompe de charge PAC2		A2 A2	G47 G48	GND PWM+
G13*	Pompe de charge PAC3	х	A3 A3	X5: 5 X5: 6	PWM+ GND
G14*	Pompe de charge PAC4	х	A3 A3	X5: 7 X5: 8	PWM+ GND
G30*	Pompe de circulation, Sonde Solaire	x	A3 A3	X5: 1 X5: 2	PWM+ GND
G31*	Pompe de charge, Rechargement forage	х	A3 A3 A3	X6: 8 X6: 10 X6: 11	Phase PE GND
G32*	Pump, échangeur Sonde Solaire	х	A3 A3	X5: 3 X5: 4	PWM+ GND
G40*	Pompe de circulatio, ECS	Х	A3 A3 A3	X6: 1 X6: 2 X6: 3	Phase PE GND

^{*} S'applique si l'accessoire d'extension CTC a été installé.

Connexion	Désignation	Option	Carte	Bornier de connexion	Câble
G41*	Pompe de charge, Ballon ECS externe	Х	A3 A3 A3	X7: 27 X7: 28 X7: 29	Phase PE GND
G50/G51*	Pompe, piscine	X	A3 A3 A3	X7: 33 X7: 34 X7: 35	Phase PE GND
K22	Contrôle Distance, SmartGrid		A2	A14	**
K22/K23	Contrôle Distance, SmartGrid		A2	A25	**
K23	Contrôle Distance, SmartGrid		A2	A24	**
K24	Contrôle Distance, SmartGrid		A2	G33	**
K24	Contrôle Distance, SmartGrid		A2	G34	**
K25	Contrôle Distance, SmartGrid		A2	G73	**
K25	Contrôle Distance, SmartGrid		A2	G74	**
Y1	Vanne Mélange 1		A2 A2 A2	A27 A28 A29	Ouvre Fermer GND
Y2	Vanne Mélange 2		A2 A2 A2	A15 A16 A17	Ouvre Fermer GND
Y3*	Vanne Mélange 3	X	A3 A3 A3	X6: 12 X6: 13 X6: 14	Ouvre Fermer GND
Y4*	Vanne Mélange 4	Х	A3 A3 A3	X7: 18 X7: 19 X7: 20	Ouvre Fermer GND
Y21	Vanne 3-voies PAC1		A2 A2 A2	A18 A19 A20	Sortie Relais Phase GND
Y22	Vanne 3-voies PAC2		A3 A3 A3	X7: 24 X7: 25 X7: 26	Sortie Relais Phase GND
Y30*	Solaire, Vanne 3-voies ECS	X	A3 A3 A3 A3	X6: 4 X6: 5 X6: 7 X6: 6	Tension/contrôle Phase GND PE
Y31*	Vanne 3-voies, solaire	Х	A3 A3 A3	X6: 8 X6: 9 X6: 11	Ouvre capteur Ouvre ballon GND
Y50	Vanne 3-voies, piscine	Х	A3 A3 A3	X7: 33 X7: 34 X7: 35	Sortie Relais PE GND
Y61*	Vanne 3-voies, Rafraîchissement actif	Х	A3 A3 A3	X7: 30 X7: 32 X7: 25	Sortie Relais GND Phase
Y62*	Vanne 3-voies, Rafraîchissement actif	X	A3 A3 A3	X6: 8 X6: 11 X6: 9	Sortie Relais GND Phase
B1	Sonde Départ 1		A2 A2	G13 G14	
B2	Sonde Départ 2		A2 A2	G15 G16	
B3*	Sonde Départ 3	X	A3 A3	X3: 13 X3: 14	
B4*	Sonde Départ 4	X	A3 A3	X2: 7 X2: 8	

^{*} S'applique si l'accessoire d'extension CTC a été installé. **Connexion selon la description des fonctions de la Contrôle Distances.

Connexion	Désignation	Option	Carte	Bornier de connexion	Câble
B5	Sonde, Ballon ECS		A2 A2	G63 G64	
B6	Sonde, Ballon tampon		A2 A2	G65 G66	
B7	Sonde retour, Circuit chauffage		A2 A2	G31 G32	
B8	Sonde, fumées		A2 A2	G35 G36	
B9	Sonde, Chaudière Externe		A2 A2	G61 G62	
B10	Sonde, Chaudière Externe sortie		A2 A2	G71 G72	
B11	Sonde Ambiance 1		A2 A2 A2	G17 G18 G19	
B12	Sonde Ambiance 2		A2 A2 A2	G20 G21 G22	
B13*	Sonde Ambiance 3	X	A3 A3 A3	X5:19 X5:20 X5:21	1 4 2
B14*	Sonde Ambiance 4	Х	A3 A3 A3	X5:22 X5:23 X5:24	1 4 2
B15	Sonde extérieure		A2 A2	G11 G12	
B30*	Sonde, Solaire entré	Х	A3 A3	X1:3 X1:4	
B31*	Sonde, Solaire sortie	X	A3 A3	X1:1 X1:2	
B43*	Sonde, extern Ballon ECS	Х	A3 A3	X2:9 X2:10	
B50*	Sonde, piscine	Х	A3 A3	X3:15 X3:16	
B61	Sonde, ballon de refroidis Rafraîchissement actif	X	A3 A3	X3:17 X3:18	
B73	Sonde, retour Rafraîchissement actif	Х	A3 A3	X3:11 X3:12	
B103	Sondes Courant		A2 A2 A2 A2	G37 G38 G39 G40	Common L1 L2 L3
PAC1	Pomp a Chaleur 1				
PAC2	Pomp a Chaleur 2				
PAC3	Pomp a Chaleur 3	Х			
PAC4	Pomp a Chaleur 4	Х			
PAC5	Pomp a Chaleur 5	Х			
PAC6	Pomp a Chaleur 6	Х			
PAC7	Pomp a Chaleur 7	Х			
PAC8	Pomp a Chaleur 8	Х			
PAC9	Pomp a Chaleur 9	X			
PAC10	Pomp a Chaleur 10	Х			

^{*} S'applique si l'accessoire d'extension CTC a été installé.

10.13 Tableau de connexion module de refroidissement

Ce tableau spécifie les connexions sur la carte de relais PAC A5 (dans le module de refroidissement), voir le schéma de câblage.

Connexion	Désignation	Option	Carte	Bornier de connexion	Câble
A4	Carte de démarrage en douceur avec protection du moteur et fonction de contacteur		A5 A5 A5	RT-/TX- RT+/TX+ GND	B A G
B21	Sonde Refoulement		A5 A5	J4: U7 GND	
B22	Sonde Aspiration		A5 A5	J5: U8 GND	
B23	Sonde, Capteur entré		A5 A5	J2: U2 GND	
B24	Sonde, Capteur sortie		A5 A5	J2: U1 GND	
B27	Sonde, PAC entré		A5 A5	J3: U4 GND	
B28	Sonde, PAC sortie		A5 A5	J2: U3 GND	
B100	Sonde Haute Pression			J4: GND J5: U9 J5: +5V	M OUT +5V ref
B101	Sonde Basse Pression		A5	J4: GND J5: U10 J5: +5V	M OUT +5V ref
F20	Pressostat haute pression		A4 A4	HP HP	
G11	Pompe de charge		A5 A5 A5 A5 A5	J23: No7 GND J21: C2 G0 X1: N J6: GND J6: Y3	X6: 1 X6: 3 X6: 2 X6: 2 X6: 2
G20	Pomp capteur		A5 A5 A5	J24: No8 GND J21: C2 G0 X1: N	X5: 1 X5: 3 X5: 2 X5: 2 X5: 2
G21	Option		A5	J22: NO6	
K26	Option		A5	J7: DI J7: GND	
M1	Compresseur			U (KM400) V (KM400) W (KM400)	

10.14 Résistances pour les sondes

Température °C	Sonde Type 1 NTC Résistance kΩ	Température °C	Sonde Type 2 NTC Résistance kΩ	Température °C	Sonde Type 3 NTC Résistance kΩ	Température °C	NTC 50 Résistance kΩ
100	0.22	100	0.67	130	5.37	150	0.89
95	0.25	95	0.78	125	6.18	145	1.00
90	0.28	90	0.908	120	7.13	140	1.14
85	0.32	85	1.06	115	8.26	135	1.29
80	0.37	80	1.25	110	9.59	130	1.47
75	0.42	75	1.47	105	11.17	125	1.67
70	0.49	70	1.74	100	13.06	120	1.91
65	0.57	65	2.07	95	15.33	115	2.19
60	0.7	60	2.5	90	18.1	110	2.5
55	0.8	55	3.0	85	21.4	105	2.9
50	0.9	50	3.6	80	25.4	100	3.4
45	1.1	45	4.4	75	30.3	95	3.9
40	1.3	40	5.3	70	36.3	90	4.6
35	1.5	35	6.5	65	43.6	85	5.4
30	1.8	30	8.1	60	52.8	80	6.3
25	2.2	25	10	55	64.1	75	7.4
20	2.6	20	12.5	50	78.3	70	8.8
15	3.2	15	15.8	45	96.1	65	10.4
10	4	10	20	40	119	60	12.5
5	5	5	26	35	147	55	15
0	6	0	33	30	184	50	18
-5	7	-5	43	25	232	45	22
-10	9	-10	56	20	293	40	27
-15	12	-15	74	15	373	35	33
-20	15	-20	99	10	479	30	40
-25	19	-25	134	5	619	25	50
-30	25	-30	183			20	62
						15	78
						10	99
						5	126

Température °C	NTC 22 kΩ Résistance Ω	Température °C	NTC 150 Résistance Ω
130	800	70	32
125	906	65	37
120	1027	60	43
115	1167	55	51
110	1330	50	60
105	1522	45	72
100	1746	40	85
95	2010	35	102
90	2320	30	123
85	2690	25	150
80	3130	20	182
75	3650	15	224
70	4280	10	276
65	5045	5	342
60	5960	0	428
55	7080	-5	538
50	8450	-10	681
45	10130	-15	868
40	12200	-20	1115
35	14770	-25	1443
30	18000	-30	1883
25	22000	-35	2478
20	27100	-40	3289
15	33540		
10	41800		
5	52400		
0	66200		
-5	84750		
-10	108000		
-15	139000		

181000

238000

-20 -25

Température °C	NTC 015 Résistance Ω
40	5830
35	6940
30	8310
25	10000
20	12090
15	14690
10	17960
5	22050
0	27280
-5	33900
-10	42470
-15	53410
-20	67770
-25	86430

11. Premier démarrage

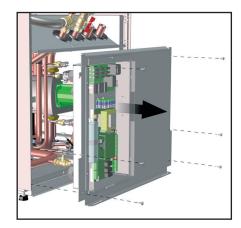
- 1. Vérifiez que le ballon et le système de chauffage sont remplis en eau et ont été purgés.
- 2. Contrôlez que tous les raccords sont étanches.
- 3. Vérifiez que les sondes et la pompe du circuit de chauffage sont connectées à l'alimentation électrique.
- 4. Activez la pompe à chaleur en allumant l'interrupteur de sécurité (l'interrupteur général).

Lorsque le système est monté en température, vérifiez que tous les raccordements sont serrés, que les différents systèmes ont été purgés, que de la chaleur sort du système et que de l'eau chaude sort des robinets.

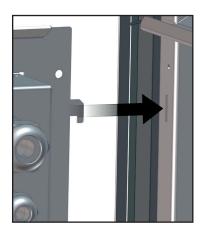
12. Fonctionnement et maintenance

Une fois que l'installateur a installé votre nouvelle pompe à chaleur, contrôlez avec lui que le système est en bon état de fonctionnement. Laissez l'installateur vous montrer où se trouvent les interrupteurs, les commandes et les fusibles afin que vous sachiez comment le système fonctionne et doit être maintenu. Purgez les radiateurs (en fonction du type de système) au bout d'environ trois jours de fonctionnement et remplissez d'eau si nécessaire.

12.1 Maintenance périodique


Après trois semaines de fonctionnement et tous les trois mois au cours de la première année, puis une fois par an :


- Vérifiez que l'installation ne présente pas de fuites.
- Vérifiez que le produit et le système sont libres d'air ; purgez si nécessaire – voir la section Raccordement du circuit d'eau glycolée.
- Vérifiez que le circuit d'eau glycolée est encore sous pression et que le niveau de liquide dans le vase d'expansion de l'eau glycolée est adéquat/correct.
- Les produits ne nécessitent pas d'inspection annuelle pour les fuites de réfrigérant.


12.2 Arrêt du fonctionnement

Pour arrêter la pompe à chaleur, utilisez l'interrupteur. En cas de risque de gel de l'eau, purgez toute l'eau.

12.3 Position de service

13. Dépannage

La pompe à chaleur est conçue pour fournir un niveau de confort élevé ainsi qu'un fonctionnement fiable et de longue durée. Les conseils ci-dessous peuvent être utiles et vous guider dans l'éventualité d'une défaillance opérationnelle.

Si une erreur se produit, vous devez toujours contacter l'installateur qui a installé votre appareil. Si l'installateur estime que le dysfonctionnement est dû à un défaut de conception ou de matériaux, il contactera CTC AB pour que nous puissions étudier et résoudre le problème. Entrez toujours le numéro de série du produit.

13.1 Problèmes d'air

Si vous entendez un bruit rauque en provenance de la pompe à chaleur, vérifiez qu'elle est totalement purgée. Complétez avec de l'eau si nécessaire pour que la pression correcte soit atteinte. Si ce bruit se reproduit, appelez un technicien pour en vérifier la cause.

